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MODIFYING GOODNESS‐OF‐FIT INDICATORS TO INCORPORATE

BOTH MEASUREMENT AND MODEL UNCERTAINTY

IN MODEL CALIBRATION AND VALIDATION

R. D. Harmel,  P. K. Smith,  K. W. Migliaccio

ABSTRACT. Because of numerous practical implications of uncertainty in measured data and model predictions, improved
techniques are needed to analyze and understand uncertainty and incorporate it into hydrologic and water quality
evaluations. In the present study, a correction factor was developed to incorporate measurement uncertainty and model
uncertainty in evaluations of model goodness‐of‐fit (predictive ability). The correction factor, which was developed for
pairwise comparisons of measured and predicted values, modifies the typical error term calculation to consider both sources
of uncertainty. The correction factor was applied with common distributions and levels of uncertainty (represented by
coefficients  of variation ranging from 0.026 to 0.256) for each measured value and each predicted value from five example
data sets. The modifications resulted in inconsequential changes in goodness‐of‐fit conclusions for example data sets with
very good and poor model simulations, which is both logical and appropriate because very good model performance should
not improve greatly and poor model performance should not become satisfactory when uncertainty is considered. In contrast,
incorporating uncertainty in example data sets with initially moderate goodness‐of‐fit resulted in important improvements
in indicator values and in model performance ratings. A model evaluation matrix was developed to present appropriate model
performance conclusions, considering both model accuracy and precision, based on various levels of measurement and model
uncertainty. In cases with highly uncertain calibration/validation data, definitive “good” fit conclusions are cautioned
against even with “good” indicator values because of the uncertain standard of comparison; however, in these cases, poor
model accuracy can be confidently concluded from “unsatisfactory” indicator values. In contrast, model accuracy can be
confidently concluded from goodness‐of‐fit indicator values in cases with low measurement uncertainty. It is hoped that the
modified goodness‐of‐fit indicators and the model evaluation matrix contribute to improved goodness‐of‐fit conclusions and
to more complete assessments of model performance.

Keywords. Index of agreement, Model evaluation, Nash‐Sutcliffe coefficient of efficiency, Watershed models.

he scientific and societal value in determining the
uncertainty in hydrologic and water quality
modeling and communicating that uncertainty to
scientific, regulatory, policy, and public interests

has been recently emphasized (Kavetski et al., 2002;
Reckhow, 2003; Muñoz‐Carpena et al., 2006; Pappenberger
and Beven, 2006; Beven, 2006; Shirmohammadi et al.,
2006). Presenting uncertainty estimates for model
predictions and measured data allows decision‐makers to
assess and quantify their confidence in the measured and
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predicted values, which facilitates informed analysis,
communication,  and decision‐making.

Model uncertainty (excluding components related to
measurement uncertainty) may be attributed to
parameterization  (parameter uncertainty), algorithm selec-
tion and ability to represent the natural process, and natural
process variability based on temporal and spatial scales
(Vicens et al., 1975; Beven, 1989; Haan, 1989). Model
uncertainty assessment methods include: first‐order
approximation (Haan, 2002), mean value first‐order
reliability (Madsen et al., 1986), Monte Carlo simulation
(Haan et al., 1995), generalized likelihood uncertainty
estimation (Beven and Freer, 2001), dynamically dimen-
sioned search‐approximation of uncertainty (Tolson and
Shoemaker, 2008), importance sampling (Gelman et al.,
1995; Kuczera and Parent, 1998), Latin hypercube sampling
(McKay et al., 1979), Markov chain Monte Carlo (Metro-
polis et al., 1953; Gelman et al., 1995), parameter solution
(Duan et al., 1992; Van Griensven and Meixner, 2006), and
sequential uncertainty fitting algorithm (Abbaspour et al.,
2007). These methods all address parameter uncertainty
using different underlying assumptions and thus produce
method‐specific  results, which are difficult to compare
quantitatively  (see Shirmohammadi et al., 2006; Yang et al.,
2008). The present research does not address these
alternatives but focuses instead on model evaluation when
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the distributions of uncertainty about each measured value
and each modeled value can be reasonably assumed and
incorporated into calibration and/or validation.

MODEL EVALUATION

Willmott (1981), Legates and McCabe (1999), Moriasi et
al. (2007), and Jain and Sudheer (2008) provide thorough
discussions regarding common indicators for evaluating
model performance, and others illustrate the application of
these indicators (Loague and Green, 1991; Santhi et al., 2001;
Van Liew et al., 2003). The degree to which models achieve
their primary goal of adequately representing real‐world
processes is typically judged by pairwise comparison of
measured data and model output (Legates and McCabe,
1999) and with graphical comparison of measured and
predicted values. As traditionally applied, most quantitative
goodness‐of‐fit indicators use the simple difference to
represent the deviation between observed and predicted data
(Legates and McCabe, 1999). Harmel and Smith (2007)
modified this error calculation to evaluate model goodness‐
of‐fit considering uncertainty in measured calibration and
validation data (e.g., discharge or constituent loads).
However, no indicators are currently available that consider
both measurement uncertainty and model uncertainty in
goodness‐of‐fit evaluation.

In an excellent overview, Engel et al. (2007) defined the
content necessary to develop model application protocols (or
modeling quality assurance plans), which are needed to
enhance the scientific validity of models and to increase the
defensibility of model applications in light of regulatory,
programmatic,  and research implications. In discussing
calibration and validation procedures, Engel et al. (2007)
emphasized the need to assess model goodness‐of‐fit and to
assess the uncertainty in model results and measured data;
however, no methods for assessing goodness‐of‐fit
considering both measurement uncertainty and model
uncertainty were provided.

Therefore, the primary objective of this research was to
develop a correction factor to incorporate both measurement
uncertainty and model uncertainty into goodness‐of‐fit
evaluation in calibration and validation of hydrologic and
water quality models. The correction factor was developed to
modify the error term between pairs of individual measured
and predicted values, not for the comparison of the
populations of measured and predicted values. Correction
factor development is described, and application results for
five example data sets are presented. In addition, a model
evaluation matrix was developed and is presented to assist
modelers in drawing appropriate goodness‐of‐fit
conclusions. In contrast to the typically employed model
evaluation mindset, this matrix considers the inherent
measurement uncertainty and model uncertainty in model
performance evaluation.

CORRECTION FACTOR DEVELOPMENT
BACKGROUND

Several goodness‐of‐fit indicators, which are commonly
utilized in pairwise comparison of measured and predicted
values, were selected for this study. The selected indicators
include the Nash‐Sutcliffe coefficient of efficiency (ENS), the
index of agreement (d), root mean square error (RMSE), and

mean absolute error (MAE). Basic information on each
indicator is presented subsequently; more detailed
information can be found in Nash and Sutcliffe (1970),
Willmott (1981), Legates and McCabe (1999), and Moriasi
et al. (2007). The Nash‐Sutcliffe coefficient of efficiency was
developed as a dimensionless indicator to better evaluate
hydrologic and water quality model goodness‐of‐fit than the
coefficient of determination (R2), which is insensitive to
additive and proportional differences between measured and
simulated values (Nash and Sutcliffe, 1970). However, both
R2 and ENS are overly sensitive to extreme values because
each squares the values of paired differences (Legates and
McCabe, 1999). McCuen et al. (2006) and Jain and Sudheer
(2008) provide in‐depth discussion of the appropriate
interpretation  and application of ENS. Another widely used
dimensionless indicator of hydrologic and water quality
model goodness‐of‐fit is the index of agreement, which was
designed by Willmott (1981) to be a measure of the degree to
which a model's predictions are error free, not to be a measure
of correlation. According to Legates and McCabe (1999),
d is better suited for model evaluation than R2, but it too is
overly sensitive to extreme values. The root mean square
error and mean absolute error are well‐accepted absolute
error goodness‐of‐fit indicators that describe differences in
observed and predicted values in the appropriate units
(Legates and McCabe, 1999).

As shown in table 1, these indicators all contain an
identical error term (deviation calculation), which is the
difference between each pair of observed and predicted
values (eq. 1). As such, this calculation does not consider the
uncertainty in measured data or model output:

iii POe −= (1)

where
ei = deviation between paired observed and predicted

data
Oi = observed (measured) value
Pi = predicted (modeled) value.

Table 1. Traditional calculations for selected goodness‐of‐fit indicators
used in pairwise comparison of measured and predicted values.
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[a] Nash and Sutcliffe (1970).
[b] Willmott (1981).
[c] Legates and McCabe (1999).
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A correction factor developed by Harmel and Smith
(2007) modified the error term in equation 1 by incorporating
the distribution of measurement uncertainty (eq. 6). This
modification enhances goodness‐of‐fit evaluation in model
calibration and validation in the presence of measurement
uncertainty, but it does not consider the effect of model
(prediction) uncertainty:

( )ii
i

i PO
measCF

mease −⋅=
5.0

)(
)( (6)

where
e(meas)i = modified deviation considering only

measurement uncertainty
CF(meas)i = non‐dimensional correction factor for each

measured (Oi) and predicted (Pi) pair based
on the probability distribution of each
measured value

0.5 = One‐sided probability for Oi at mean value
assuming a symmetric distribution.

Thus, in the presence of both measurement uncertainty
and model uncertainty, each of which can be considerable
(Beck, 1987; Harmel et al., 2006), it is more appropriate to
evaluate model predictions considering both sources of
uncertainty. A correction factor was, therefore, developed to
incorporate measurement uncertainty and prediction
uncertainty and enhance goodness‐of‐fit evaluation by
producing realistic estimates of the deviations between
measured values and model predictions.

INCORPORATING BOTH MEASUREMENT 
AND MODEL UNCERTAINTY

The correction factor and resulting error term modification
were based on the idea that the deviation between measured and
predicted values should be adjusted to incorporate their
respective assumed uncertainty distributions. The theoretical
basis of the correction factor is that of Haan et al. (1995), which
stated that the degree of overlap between corresponding
probability density functions (pdfs) for measured and predicted
values is indicative of model predictive ability. The closer the
measured and predicted values are to one another and/or the
greater the variance in their pdfs, the more their respective
uncertainty distributions overlap. The degree of overlap is
represented by their intersection or joint probability. Assuming
that Oi and Pi are independent, the degree of overlap can be
determined with basic probability methods, as shown in
equation 7 (Haan, 2002) and illustrated in figure 1. Since this
method assumes independence between individual observed
and predicted values, the method is not applicable for models
in which future predictions of the variable of interest are based
on historic realizations of that same variable:
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where
DOi = degree of overlap for distributions for each

measured (Oi) and predicted (Pi) pair
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Figure 1. Graphical representation of the degree of overlap and resulting
correction factor determination for Oi < Pi assuming normal distributions
for measurement uncertainty and model uncertainty.

pO(oi) = probability density function for the observed
value Oi

pP(pi) = probability density function for the predicted
value Pi.

The degree of overlap for each pair of measured and
predicted values is then used to determine the correction
factor, which ranges from 0 to 1.0 (eq. 8). The smaller the
degree of overlap, the larger the correction factor becomes,
and vice versa:

ii DOpredmeasCF −=+ 1)( (8)

where CF(meas+pred)i is the correction factor that
incorporates measurement and prediction uncertainty for
each measured (Oi) and predicted (Pi) pair.

Thus, the resulting error term modification (eq. 9)
considers both measurement uncertainty and model
uncertainty. This modified error term can then be substituted
for the simple Oi ‐ Pi error term to modify the traditional
calculations for goodness‐of‐fit indicators (eqs. 2, 3, 4, and
5):

( )iiii POpredmeasCFpredmease −⋅+=+ )()( (9)

where e(meas+pred)i is the modified deviation for each
measured (Oi) and predicted (Pi) pair.

This correction factor was designed for pairwise
comparisons of individual measured and predicted values.
The current application assumed a single value for each
measured data point and assumed deterministic (single
value) model output for the corresponding model prediction.
However, repeated measurements and/or stochastic
modeling that produce multiple measured and/or predicted
values or a distribution of predicted values are also
appropriate for estimating mean and standard deviations with
which to determine the uncertainty boundaries for correction
factor calculation. In this case, pairwise comparisons are
made between the measures of central tendency for each
measured and/or predicted value.

It is important to note that in either case, the probability
distributions utilized are those for individual values of Oi or
Pi, not for the entire population of measured or predicted
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values. It is also important to note that the error calculation
in equation 6 includes only measurement uncertainty and that
the error calculation in equation 9 includes both
measurement uncertainty and model uncertainty. Thus,
equation 6 should be used only when measurement
uncertainty alone is considered, and equation 9 should be
used only when both measurement uncertainty and model
uncertainty are considered. The values of e(meas)i and
e(meas+pred)i are not comparable and were not designed to
be so.

APPLICATION TO EXAMPLE DATA SETS
CORRECTION FACTOR DETERMINATION FOR 
SELECTED UNCERTAINTY DISTRIBUTIONS

The procedures to calculate the correction factor for
several common distributions (normal, uniform, lognormal)
are summarized subsequently. Little if any information is
available regarding the distributional properties of
measurement uncertainty for individual values, although the
uncertainty associated with various procedures is fairly well
documented (e.g., Pelletier, 1988; Kotlash and Chessman,
1998; Harmel et al., 2009). Model uncertainty information is
also limited, but distributional properties for the population
of predicted values (e.g., Haan and Skaggs, 2003a, 2003b;
Shirmohammadi  et al., 2006; Migliaccio and Chaubey, 2008)
and upper and lower boundaries for each predicted value
(e.g., Muleta and Nicklow, 2005; Shen et al., 2008) have been
presented. Thus, in the absence of comprehensive
information describing appropriate distributions for
measurement and model uncertainty for individual values,
the normal, uniform, and lognormal distributions were
assumed to be appropriate for the current application;
however, any appropriate distribution may be used in
subsequent applications of the correction factor method (eqs.
7, 8, and 9).

The normal, lognormal, and uniform distributions are all
two‐parameter  distributions either described by or derived
from the mean and standard deviation. The means for Oi and
Pi were set at each measured and predicted value,
respectively. The standard deviations were calculated from
the coefficients of variation (Cv), as shown in equation 10
(Haan, 2002):

x

sx=Cv (10)

where
sx = sample standard deviation
x = sample mean.
The uncertainty boundaries (Oi max, Oi min, Pi max, and Pi

min) or limits in equation 7 were estimated for the normal and
lognormal distributions assuming that they occur at the
0.0001 and 0.9999 probabilities. For the uniform
distribution, the uncertainty boundaries (the uniform
distribution parameters α and β) were estimated by
equation�11:
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The coefficient of variation is one of the most common
ways to express uncertainty in measured and modeled data
(Haan et al., 1995; Hession et al., 1996; Tyagi and Haan,
2001; Haan and Skaggs, 2003a, 2003b), although other
expressions of uncertainty such as the probable error range
(±%) used in Harmel et al. (2006, 2009) and Harmel and
Smith (2007) are also appropriate. Expressing uncertainty
with Cv values also allows negative values in the
distributions to be avoided, as recommended by Tyagi and
Haan (2001). Four Cv values (0.026, 0.085, 0.192, and 0.256)
were selected to evaluate the goodness‐of‐fit impact of
various levels of uncertainty (from low, Cv = 0.026; to
moderate, Cv = 0.085 and 0.192; to high, Cv = 0.256) about
each measured value and each predicted value. These Cv
values represent the uncertainty about each measured value
and each predicted value, and as such they are expected to be
smaller than for the populations of measured and predicted
values. Only results for the maximum and minimum
uncertainty estimates (Cv = 0.026 and 0.256) are presented
in table 3 because these results encompass those for Cv =
0.085 and Cv = 0.192.

DESCRIPTION OF EXAMPLE DATA SETS

The correction factor method was applied to determine
goodness‐of‐fit indicator values for five example data sets
selected to represent a range of time scales, data types,
simulation models, and goodness‐of‐fit results (table 2). The

Table 2. Summary information for example data sets.

Study Site
(Location)

Data Type
(units)

Model Used
(Reference) ]a[

O ]b[
P n[c]

Riesel Field Y6
(Texas)

Monthly runoff
(mm)

EPIC
(Williams and Sharpley, 1989) 23.3 22.6 48

Riesel Field Y6
(Texas)

Monthly dissolved P load
(kg/ha)

EPIC
(Williams and Sharpley, 1989) 0.03 0.06 48

Reynolds Creek watershed
(Idaho)

Daily streamflow
(m3/s)

SWAT
(Arnold et al., 1998) 0.68 0.71 1827

South Fork watershed
(Iowa)

Daily streamflow
(ft3/s)

SWAT
(Arnold et al., 1998) 0.56 0.55 552

Medina River watershed
(Texas)

Daily streamflow
(ft3/s)

HSPF
(Bicknell et al., 1997) 4.62 3.98 730

 values.predictedandmeasuredpairedofNumber

 values.predictedofmean

 values.(measured)observedofmean

]c[

]b[

]a[

=
=

P

O
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Table 3. Goodness‐of‐fit indicator values as traditionally calculated and as modified with the correction factor to account
for measurement uncertainty and model uncertainty. Results are shown for all three selected distributions (normal,

uniform, and log normal) but only for the maximum and minimum uncertainties (Cv = 0.026 and 0.256).
Study Site

(Data Type) Indicator
Traditional
Calculation

Normal
Cv = 0.026

Uniform
Cv = 0.026

Log Normal
Cv = 0.026

Normal
Cv = 0.256

Uniform
Cv = 0.256

Log Normal
Cv = 0.256

Field Y6
(monthly
runoff)

d
ENS

ENS (rating)[a]

RMSE (mm)
MAE (mm)

0.99
0.96

Very good
8.78
5.24

0.99
0.96

Very good
8.72
5.05

0.99
0.96

Very good
8.76
5.18

0.99
0.96

Very good
8.72
5.05

1.00
0.99

Very good
4.81
2.16

0.99
0.98

Very good
5.95
3.45

1.00
0.99

Very good
4.74
2.03

Field Y6
(monthly
dissolved
P load)

d
ENS

ENS (rating)
RMSE (kg/ha)
MAE (kg/ha)

0.76
‐1.40

Unsatis.
0.08
0.03

0.76
‐1.40

Unsatis.
0.08
0.03

0.76
‐1.40

Unsatis.
0.08
0.03

0.76
‐1.40

Unsatis.
0.08
0.03

0.81
‐0.89

Unsatis.
0.07
0.03

0.77
‐1.34

Unsatis.
0.08
0.03

0.82
‐0.83

Unsatis.
0.07
0.03

Reynolds Creek
watershed

(daily
streamflow)

d
ENS

ENS (rating)
RMSE (m3/s)
MAE (m3/s)

0.92
0.73
Good
0.66
0.35

0.92
0.73
Good
0.66
0.35

0.92
0.73
Good
0.66
0.35

0.92
0.73
Good
0.66
0.35

0.96
0.87

Very good
0.46
0.20

0.94
0.78

Very good
0.58
0.30

0.97
0.88

Very good
0.43
0.17

South Fork
watershed

(daily
streamflow)

d
ENS

ENS (rating)
RMSE (ft3/s)
MAE (ft3/s)

0.72
‐0.01

Unsatis.
0.77
0.43

0.72
0.00

Unsatis.
0.77
0.43

0.72
‐0.01

Unsatis.
0.77
0.43

0.72
0.00

Unsatis.
0.77
0.43

0.77
0.17

Unsatis.
0.70
0.33

0.73
0.04

Unsatis.
0.75
0.40

0.78
0.20

Unsatis.
0.68
0.31

Medina River
watershed

(daily
streamflow)

d
ENS

ENS (rating)
RMSE (ft3/s)
MAE (ft3/s)

0.88
0.49

Unsatis.
8.65
1.77

0.88
0.49

Unsatis.
8.65
1.75

0.88
0.49

Unsatis.
8.65
1.77

0.88
0.49

Unsatis.
8.65
1.75

0.93
0.72
Good
6.49
0.88

0.90
0.58

Satisfactory
7.85
1.44

0.93
0.72
Good
6.42
0.75

[a] Qualitative model performance ratings for ENS (unsatisfactory = ENS < 0.50, satisfactory = 0.50 < ENS < 0.65, good = 0.65 < ENS < 0.75, 
and very good = ENS > 0.75) were determined from Moriasi et al. (2007).

Erosion Productivity Impact Calculator (EPIC) example
represented very good results (Riesel Y6 runoff) and poor
results (Riesel Y6 dissolved P load). One of the Soil and
Water Assessment Tool (SWAT) examples represented poor
model performance due to structural deficiencies (South
Fork streamflow), which were corrected by Green et al.
(2006). The other SWAT example (Reynolds Creek
streamflow) and the Hydrologic Simulation Program Fortran
(HSPF) example (Medina River streamflow) represented
typical hydrologic conditions with moderate predictions.

RESULTS OF APPLICATION TO 
EXAMPLE DATA SETS
MODEL PERFORMANCE EVALUATION

The results for application of the correction factor with
four levels of uncertainty (as represented by four Cv values
from 0.026 to 0.256) and three distributions about each
measured and predicted value for five example data sets
appear subsequently. The discussion focuses on goodness‐of‐
fit determination based on indicator values as traditionally
calculated and as calculated with a correction factor that
incorporates both measurement uncertainty and model
uncertainty (table 3). However, graphical analysis is also
presented for one example data set (figs. 2 and 3) because of
the value of coupling quantitative and visual evaluations of
model performance.

In the example with very good fit between measured and
predicted data (EPIC ‐ field Y6 monthly runoff), the
correction factor produced inconsequential changes in the
ENS, d, RMSE, and MAE indicator values compared to the
traditional calculations. As shown in table 3, little to no
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Figure 2. Measured versus simulated daily streamflow for the Medina
River: (a) as a simple scatter plot, and (b) as a scatter plot with uncertainty
boundaries assuming a uniform distribution and a Cv of 0.192 for each
measured and simulated value.

improvement in indicator values relative to their traditional
calculations occurred with low uncertainty (Cv = 0.026), but
noticeable improvement in already good indicator values
occurred as Cv values increased. All ENS values, as
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Figure 3. Measured and simulated daily streamflow hydrograph for the
Medina River example assuming a uniform distribution and a Cv of 0.192
for each measured and simulated value. The uncertainty boundaries are
presented as the shaded area for measured streamflow and as the upper
and lower boundary lines for simulated streamflow.

traditionally  calculated and as modified in the current
application,  produced very good model performance ratings
based on Moriasi et al. (2007). Since this example was chosen
for its very good model performance, it was logical and
appropriate that incorporating measurement uncertainty and
model uncertainty did not change any goodness‐of‐fit
conclusions.

In examples with poor simulation of measured data
(EPIC�‐ field Y6 monthly dissolved P load; SWAT ‐ South
Fork daily streamflow), the correction factor produced even
smaller indicator value changes than were produced in the
very good fit example (table 3). Incorporating measurement
and model uncertainty in ENS calculations did not change the
unsatisfactory model performance rating (Moriasi et al.,
2007) for any distribution at any uncertainty level. The
minimal indicator value changes and the unchanging
performance ratings are very important because incor-
porating measurement uncertainty and model uncertainty
should not prevent poor goodness‐of‐fit conclusions.
Similarly, uncertainty should not be used to justify the utility
of a model application with obviously poor representation of
measured data.

In contrast to the poor simulation examples, the correction
factor produced important changes in goodness‐of‐fit
indicator values when applied to example data sets with
moderate model performance (SWAT–Reynolds Creek daily
streamflow; HSPF–Medina River daily streamflow).
Noticeable improvement occurred for all indicator values,
especially as uncertainty increased to Cv = 0.256. These
indicator value changes were important because their
magnitudes tended to be greater than for the other examples,
especially the poor simulation examples, and because the
changes crossed model performance rating thresholds
(e.g.,�satisfactory  to good) based on Moriasi et al. (2007).
The modified ENS values improved model performance
ratings from good to very good for SWAT prediction of daily
streamflow on Reynolds Creek and from unsatisfactory to
satisfactory or good performance for HSPF prediction of
daily streamflow on the Medina River. The other examples
either presented such very good or very poor model results
that incorporating measurement and model uncertainty had
little effect on goodness‐of‐fit conclusions. In contrast,

incorporating uncertainty in these two examples with fair
(moderate) model performance produced important and
appropriate changes in goodness‐of‐fit conclusions.

The graphical illustration of model performance for the
Medina River data set (figs. 2 and 3) was included to
emphasize the value of additional insight not provided by the
quantitative  goodness‐of‐fit indicators. In this example data
set, reasonable goodness‐of‐fit was observed throughout the
range of measured values, although higher flows were not
simulated as accurately as lower flows (fig. 2a). When
uncertainty was included, the uncertainty boundaries
overlapped the 1:1 line for most values between 1 and 5 ft3/s,
for fewer values between 5 and 20 ft3/s, but for very few
values larger than 20 ft3/s (fig. 2b). Thus, model performance
became poorer as stream flow increased, which is an
important insight not provided by the quantitative indicators.
Figure 3 illustrates good model fit in most flow conditions,
except for very high flow and for flow recession following
high flow.

VALUE OF MULTIPLE MODEL EVALUATION METHODS

Another important consideration in model evaluation is
the value of utilizing multiple evaluation methods, including
graphical techniques and quantitative goodness‐of‐fit
indicators, to assess overall model performance (Willmott,
1981; Legates and McCabe, 1999; Moriasi et al., 2007; Jain
and Sudheer, 2008), the benefits of which are clearly shown
in the Medina River example (figs. 2 and 3). Ideally, model
assessment performance should include graphical
techniques, at least one relative indicator (e.g., ENS or d), and
at least one absolute indicator (e.g., RMSE or MAE).
Although applying multiple model evaluation techniques
requires additional calculations and can produce mixed
results, it produces more complete model assessments. Such
assessments would no doubt benefit from development of
model performance ratings for all of the typically applied
indicators, similar to Moriasi et al. (2007) for ENS, to reduce
the subjectivity in rating performance as good, satisfactory,
unsatisfactory, etc. It is important to note that the present
methodology incorporates measurement uncertainty and
model uncertainty, and thus provides valuable supplemental
information to be used in conjunction with, not instead of,
traditionally  applied statistical and graphical model
evaluation methods.

EFFECTS OF DISTRIBUTIONAL CHOICES
As shown in table 3, the selected uncertainty distribution

affected the magnitude of improvement in goodness‐of‐fit
indicator values. For equal uncertainty estimates (e.g., Cv =
0.256), the magnitude of goodness‐of‐fit improvement was
consistently greater for the normal and log normal
distributions than for the uniform distribution. This occurred
because the uniform distribution bounds are narrower than
the normal distribution (theoretically unbounded in both tails
of the distribution) and the lognormal distribution
(theoretically  unbounded in the right tail). However, the
distributional assumption is not as important in uncertainty
analysis as good estimates of the means and standard
deviations (Haan et al., 1998). The magnitude of the
uncertainty in the form of increasing Cv values (and
subsequently increasing standard deviations) had a much
larger impact on goodness‐of‐fit improvement.
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Table 4. Model evaluation matrix for appropriate model performance conclusions in model
calibration/validation considering both measurement uncertainty and prediction uncertainty.

Case

Uncertainty
in Measured

Data

Uncertainty
in Model

Predictions

Overall Model Performance Conclusions
Based on Model Accuracy (goodness‐of‐fit) and Model Precision

“Good” Indicator Values “Unsatisfactory” Indicator Values

1 High Low High model precision, but high measurement 
uncertainty prevents definitive model accuracy 

conclusion in spite of good fit indication.

Unsatisfactory model performance due to poor 
accuracy in spite of high model precision.

2 High High Low model precision, but high measurement 
uncertainty prevents definitive model accuracy 

conclusion in spite of good fit indication.

Unsatisfactory model performance due to 
low precision and poor accuracy.

3 Low High Low model precision, 
but good model accuracy.

Unsatisfactory model performance due to 
low precision and poor accuracy.

4 Low Low Good model performance in terms of 
high precision and good accuracy.

Unsatisfactory model performance due to poor 
accuracy in spite of high model precision.

DISCUSSION
MODEL EVALUATION MATRIX

Because of the ever present, yet rarely considered, effect
of uncertainty on judgments of model performance, a model
evaluation matrix was developed to assist modelers in
making appropriate model performance conclusions
(table�4).  The matrix presents appropriate conclusions for
overall model performance that include both model accuracy
(goodness‐of‐fit) and model precision, as both are important
considerations in evaluating and reporting model per-
formance. The model evaluation matrix presents four general
cases based on qualitative indications of the uncertainty in
measured calibration/validation data and in model pre-
dictions.

As shown in table 4, accounting for highly uncertain
calibration/validation  data can preclude definitive goodness‐
of‐fit conclusions. In cases 1 and 2, although “good”
indicator values indicate good fit between model predictions
and measured data, definitive model accuracy conclusions
are inappropriate because of the highly uncertain standard of
comparison. Thus, definitive “good” conclusions are
cautioned against in these cases, even though it is entirely
possible that the model may actually represent true field
conditions as well as or better than the measured data. In
contrast, when “unsatisfactory” indicator values result even
with the consideration of high measurement uncertainty, then
poor model accuracy can be confidently concluded. When
calibration/validation  data have low uncertainty (cases 3 and
4), then model goodness‐of‐fit (accuracy) can be confidently
concluded because the standard of comparison is relatively
certain. As shown in table 4, “good” indicator values
definitively indicate good model accuracy, and “unsatisfac-
tory” indicator values definitively indicate poor model
accuracy.

In either of the cases with high model prediction
uncertainty (cases 2 and 3), low model precision is an
important model deficiency regardless of the goodness‐of‐fit
conclusion. This deficiency is especially important when
coupled with poor fit (“unsatisfactory” indicator values),
which together indicate low precision and poor accuracy and
overall poor model performance. In the cases with low
prediction uncertainty (cases 1 and 4), high model precision
is apparent, and evaluation of model accuracy becomes more
important.

CONCLUSIONS
The methodology presented herein produced a correction

factor to modify the traditional error term in commonly
applied model goodness‐of‐fit indicators by incorporating
both measurement (data) uncertainty and model (prediction)
uncertainty. When applied to example data sets with very
good and poor model simulations, the correction factor
produced inconsequential changes in goodness‐of‐fit results,
which is exactly what should occur in these circumstances.
In contrast, the correction factor produced important
improvements in goodness‐of‐fit indicator values and in
model performance ratings for data sets with moderate
agreement.  This again is exactly what should occur when
uncertainty is considered in model simulations that are
reasonable but not great.

Accounting for measurement uncertainty and model
uncertainty with this methodology can improve model
calibration by reducing the likelihood of “overcalibration.”
Overcalibration,  which can occur when attempting to reach
“target” indicator value thresholds (such as Moriasi et al.,
2007) to conclude satisfactory model calibration, can make
the model less representative of the real‐world system and
more dependant on the calibration data set. Application of the
modified goodness‐of‐fit indicators and the model
evaluation matrix, along with traditionally applied statistical
and graphical methods, should also facilitate enhanced
goodness‐of‐fit conclusions and more complete assessments
of model performance, given that the presence of
measurement uncertainty and prediction uncertainty cannot
be debated.
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